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V. Introduction

Conventional mammography has been shown to play an important role in detection
and staging of breast cancer in older women. For younger women who frequently have
radiodense breast tissue or women with silicon implants, rendering breast cancer diagnosis
with conventional mammography is problematic. When mammographic findings and clinical
findings concur regarding the possibility of a lesion being malignant, usually a fine-needle
aspiration biopsy will be performed for definitive diagnosis. The false positive rate is high;
only 20-30% of lesions suspicious for cancer at mammogram are actually positive for cancer
at biopsy (1). In general, mammography is limited to detect a tumor several millimeters or
larger in size. Because of difficulty with early detection, clinicians are sometimes limited to
treat larger size cancers, which in many cases have already metastasized. Accurate definition
of tumor size, number, and margins is highly critical in the clinical determination of
conservation treatment versus mastectomy. A role exists for an imaging method that can
improve sensitivity for detection of small lesion and to improve the specificity for better
staging of the disease. To provide the best chance of overall survival, breast cancers need to
be accurately staged for systemic treatment and optimal conservation surgery. Traditionally,
the gold standards for such assessments are clinicopathological staging and histopathological
typing and grading of malignancy. In the classical histopathological approach problems exist
inherently, predominantly, the accuracy of the initial biopsy procedure and the variable skills
applied to its histological assessment (2). Development of a new modality to remove sampling
errors, improve specificity and produce a grading of tissues that relates to establish biological
criteria would be very useful.

Over the last few years, magnetic resonance imaging (MRI) and spectroscopy (MRS)
have emerged as one of the most promising clinical tools to fill the gap between clinical needs
and information obtained by conventional breast imaging and pathological methods (3-13).
Preliminary results indicate that MRI may be more sensitive than conventional x-ray
mammography in detecting small lesions (14-16). Cancers have typical metabolic
characteristics in >'P and 'H MRS including high levels of phospholipid metabolites and a
cellular pH more alkaline than normal (17-24). Although these alone are not unique for cancer
they are very useful diagnostic information in appropriate clinical settings. MRS is capable of
distinguishing benign and malignant lesions in a particular anatomical site and to be a specific
diagnostic discriminant in a particular situation. It has been demonstrated to be useful to
improve the specificity of the MR imaging of breast (25-36). Some metabolic characteristics
appear to be prognostic indices and correlate well with the response of treatment. The
improvement of specificity will reduce the number of biopsies performed to confirm false-
positive mammographic findings and more effectively assess the results of treatment. Many of
these progresses are based on the advances of nuclear magnetic resonance (NMR) studies of
perfused breast cancer cells and tumor-bearing animal models. One of the major limitations of
the application of NMR methods both in vitro and in vivo is its low sensitivity. The sensitivity
determines the ultimate cancer detection capability and the resolution in image and in
spectrum. In this study, a high temperature superconductor (HTS) working at very low
temperature will be used to reduce electronic noise and significantly improve the sensitivity of
detection. It will dramatically increase the sensitivity and improve the resolutions (37-39).
The improvement will be verified by comparing the sensitivity with that of a conventional




probe. The improvement of detection sensitivity will provide a more accurate diagnosis, and it
may become possible for early prediction of tumor response to therapy. The probes will be
constructed with YBa,Cu;O; material and tested in two well defined experiments: an in vitro
cell metabolism study on a 9.4 T spectrometer and an in vivo tumor bearing animal study on a
4.7 scanner. In the cell metabolism study, the breast cancer cell line MCF7 and its variants
will be studied in terms of characteristic differences of their *'P spectra during growth phase
and under effects of Tamoxifen (40-41). In the in vivo animal study, MCF7 cells and its
variants will be grown as xenografts on nude mice. The differences of 31P spectra during
progress of tumor and responses to Doxorubicin and Tamoxifen will be studied. The high-
resolution proton imaging experiments of vasculature of tumor will also be conducted.

VI. Body

In the first year of the project, the design of self-resonant probes for high-resolution
NMR has been completed (Figure 1A and 1B). The receiver coil uses thin-film, high
temperature superconductor (HTS), YBa,Cu3zO;. The transmitter coil is a standard room-
temperature coil. The probe is designed to fit either a 9.4 T machine for in vitro cell study or a
47 T machine for animal study. The coils are detachable so that different coil can be
substituted in and out of the different machines and for different nuclei. Three identical cell
perfusion apparatus (Figure 2) for the NMR study of breast cancer cell metabolism have been
constructed and tested. The apparatus was tested using known standard compounds. To study
the metabolism of breast cancer cells for an extended period of time, the cells are
continuously perfused with nutrients. During perfusion, the breast cancer cells are restrained
in agarose gel-thread matrices. A protocol for making agarose gel-thread matrices containing
MCF7 breast cancer cells is established (Figure 3A and 3B). Besides the above-mentioned
tasks, some of the infrastructure and preparation works necessary for conducting the proposed
research have been accomplished including relocation of a 400 MHz machine and renovation
of laboratories. As part of support, the university has renovated two laboratories for this
project. One of the laboratories accommodates the NMR machines. The other laboratory is for
the chemical and biological preparation. A large amount of laboratory supplies and cell
culture materials have been ordered. New equipment including computers, a refrigerator and a
de-ionized water column have been purchased and installed.

In the second year of this project, we have fabricated and tested a HTS coil, as well as,
studied the *'P spectroscopic differences of MCF 7 cells and its variants and their responses to
Tamoxifen and Doxorubicin. Based on the test done at 77 °K, the HTS coil has a resonance
frequency 401.6 MHz and the Q value for the coil is 650. This is better than expected in the
design. We have studied the differences in the 3'p NMR spectroscopic profiles for drug
sensitive MCF7 cancer cells and their multidrug resistant variant MCF7/ADR cells (42). The
cells are embedded in agarose gel threads and perfused with growth medium during the NMR
studies. Many detailed phosphorus metabolites have been identified. The peaks on the
spectrum associated with phosphoethanolamine (PE), phosphocholine (PC), inorganic
phosphate (Pi), glycerophospho-ethanolamine (GPE), glycerophosphocholine (GPC),
adenosine triphosphate (ATP) and diphosphodiester (DPDE) can be clearly identified (Figure
4). There may be some subtle differences in the spectra of the MCF7/WT type and




MCF7/ADR cell lines. However, the differences are not conclusive using the conventional
probe with the limited resolution. We have successfully demonstrated drug sensitive MCF7
cells, which were dramatically affected by 2 pM Doxorubicin within two hours perfusion
(Figure 5) and not responsive to Tamoxifen up to 12 hours (Figure 6). In contrast, 2 uM
Doxorubicin was without any effect on multidrug resistant MCF7/ADR cells (Figure 7) and
the 3'P NMR spectrum did not differ appreciably after addition of Doxorubicin. In order to
have a highest S/N in the in vivo studies, a great deal of efforts has been made to ensure a
reliable NMR system and a contamination free cell culture environment. The scan parameters
are optimized. The magnetic field drift during the long acquisition time is negligible. All the
potential cell contamination sources are eliminated.

In the third year, we concentrated on the in vivo animal study. The MCF7 wild type
human breast cancer cells and its drug resistant variants were grown as solid tumor
xenographs in athymic nude mice as the animal model. This in vivo animal study was a
continuation of the vitro cell study. The results from the animal model were used to confirm
whether the differences seen in vitro are also observed in the in vivo spectra obtained for the
tumors growing in nude mice. The in vivo NMR imaging and spectroscopy studies of the
solid tumor have been providing information regarding (i) heterogeneity and microvasculature
of tumor, (ii) energy metabolism, (iii) tumor pH, (iv) tumor hypoxia, (v) observed predictive
response to antiestrogens and Doxorubicin even before regression by tumormeter
measurements.

Besides this in vivo animal study, the integration of the Oxford Spectrostate cryostat
with the HTS probe was completed in this year. The whole system includes HTS coil,
mounting facilities, the fine-tuning paddle and a copper impedance matching loop and the
preamp. We also have procured the specialized cryo-valves, low temperature components and
Oxford cryostat. The HTS probe was assembled with the cryostat at Quantum Magnetics Inc
(Figure 8). In this year, a localized spectroscopy technique ISIS (image-selected in vivo
spectroscopy) and STEAM techniques have been implemented and tested (43-49). The
intended selected volume was well defined. To study the progress of tumor a series of the in
vivo 3'p spectra were taken from MCF7/ADR drug resistant tumor on 4, 6, 8, and 12 days
after cell implantation (Figure 9A). The spectra clearly showed the gradual decreases of
phosphocreatine and ATP. The spectra also showed the increase of inorganic phosphate. The
potential malignant markers such as phosphomonoester and phosphodiester signals were
weak. The spectra from the non-involved control leg demonstrated no metabolic changes
during this period (Figure 9B). The constant spectral mtensmes also demonstrate the
consistency of the NMR machine. The results from these in vivo 31p spectroscopic studies
were similar to the results from the in vitro cell studies. The signal-to-noise ratio of the in
vivo animal studies was better. This was primarily due to more cells involved in the in vivo
studies. Although all the spectra show excellent signal-to-noise ratio, the measurement of
absolute values of each phosphate is difficult. This is primarily due to the NMR setup and
detection sensitivity may not be identical every time. It is always a challenge for a
quantitative measurement. The contributing factors for the variation in the measurement
include coil tuning, sample shimming, RF pulse calibration and the relative position of the
animal to the coil. In order to have a consistent reference, methylenediphosphonic acid fixed




on the coil is used as an external reference. This ensures a constant intensity of the reference
in the quantitative measurements of the metabolites.

In the third year, we also studied the small blood vessels of mice using NMR
microscopic imaging technique. The purpose of this study is to examine density and the
relative leakiness of capillaries in tumors. The field-of-view is 1.5 cm x 1.5 cm. The in-plane
spatial resolution was 30 pm. A series of high quality detailed images revealed small blood
capillaries near a wound could easily be identified (Figure 10).

For the fourth year, we continued the in vivo spectroscopy study. We had constructed
an improved cell perfusion system (Figure 11). The improved cell perfusion system contained
both a negative pressure and a positive pressure part before and after the pump (50-51). These
negative and positive pressure parts helped with the removal of air bubbles in the medium.
They also served as reservoirs to trap the air. An air bubble trapped in the NMR tube would
cause magnetic field inhomogeneity and, consequently, degrade the quality of the spectrum.
Using the improved perfusion system, the proposed cell metabolism studies could be extended
to a much longer time, more than 8 days. In the previous study, the experiment could only run
up to 14 hours. With this improved perfusion system, many time consuming experiments can
be performed more reliably and the signal-to-noise ratio has been dramatically improved.

For the in vivo spectroscopy study, MCF7/WT (wild type) breast cancer cells (~10%
were grown as conventional monolayers and harvested as single cell suspensions, which were
then embedded in agarose gel threads. These cells embedded in agarose threads were
transferred to a NMR tube and then perfused with culture medium using the new perfusion
system. Figure 12 shows an improved NMR spectrum. Phosphorus metabolites peaks are well
separated and can be easily identified. The spectrum is an accumulation of 1800 transients and
the repetition time is 2 seconds. The line broadening used is 10 Hz. The signal-to-noise ratio
is significantly better than the results in the beginning of the project (see Figure 4). The line
width of the y-ATP peak is 50 Hz. The 3lp NMR spectrum can be deconvoluted. Each
individual component of phosphorus metabolites can be separated from the spectrum (Figure
13). The individual peak-height and the integral under the peaks can be calculated and listed
as in the inserted table. The differences between the original spectrum and the fitted curve
shown on the bottom of the figure indicate the decomposition of the peaks is complete.

Since the signal-to-noise ratio of the NMR spectrum is usually low, sometimes a long
scan time is needed. This long data acquisition time prevents some fast changing experiments
such as drug effects on the metabolism of breast cancer cells. With the improved perfusion
system, long term in vivo study becomes feasible. Figure 14 shows a long term in vivo *'P
NMR spectroscopy study of MCF7 breast cancer cells. A series of 31p spectra over 5 days was
obtained. Each spectrum is an accumulation of 3 hours, 5370 transients and 2 seconds
repetition time. The line broadening is 10 Hz. Only every other spectrum is shown in Figure
14. The changes of each phosphorus metabolites can be easily studied. During this time, PC,
GPE and GPC increases while other phosphorus metabolites stay constant. Changes of
individual phosphorus metabolites of MCF7/WT (wild type) cells over first 72 hours are
carefully studied. Figure 15 shows the concentrations of 6 out of 11 phosphorus metabolites:
PE, PC, GPE, GPC and DPDE. During the first 72 hours, GPE and GPC continuously




increase while PE and DPDE remains constant. The PC peak increases initially and it
approaches a plateau later. The increases of GPE and GPC indicate the cell proliferation.
Figure 16 shows the concentrations of another five phosphorus metabolites a-ATP, B-ATP, y-
ATP, PCr, and Pi. During the course of study, ATP and Pi continuously grow and PCr
remains constant.

With the improved NMR perfusion system four drug sensitivity studies were
conducted using iodoacetamide, rotenone, sodium azide and barbital with different
concentrations. The purposes of these drug sensitive studies are to assess (a) the metabolic
process on ATP production by cells (b) the importance of oxidative phosphorylation on ATP
production and (c) the availability of oxygen in the perfusion system. 108 MCF7/WT breast
cancer cells embedded in the agarose gel were first perfused with growth medium. After the
system is stabilized (~2 hours after perfusion with medium), a series of 42 one-hour 3Ip NMR
spectra were taken. Each spectrum contains 1700 transients with 1 second repetition time.
Drug concentrations from 0.1mM to 10 mM were used. For the iodoacetamide study, after 17
hours baseline scans, ImM iodoacetamide was added in the perfused medium. Figure 17 and
Figure 18 shows the phosphorus metabolites concentrations plotted as functions of time. Six
metabolites are in Figure 17 and the other five metabolites are in Figure 18. Figure 17 shows
the absolute concentration changes of the PE, PC, GPE, GPC and DPDE. After perfusion
with iodoacetamide, PE increases dramatically and then decreases. GPE and GPC show slight
increases initially and decreases afterwards. DPDE shows continuous decreases. In Figure 18,
it shows the other five phosphorus metabolites: o-ATP, B-ATP, y-ATP, intra- and extra-
cellular Pi. After perfusion with iodoacetamide, ATP increases slightly and then decreases.
The rates of decreasing GPE, GPC, DPDE and ATP depend on the concentrations of
iodoacetamide. lodoacetamide is an inhibitor of the electron transport chain and consequently
it will change the respiratory states of the cells. While the concentrations of high-energy
phosphates decreases, the intracellular Pi continuously increases. A new extracellular Pi peak
appears immediately after the drug perfusion and the concentration of the extracellular Pi
increases for a few hours before it disappears due to the perfusion. The ability of detection of
extracellular Pi and separated from the intracellular Pi after exposure to different drugs is new
and exciting. For barbital study (10 mM) the ATP and PCr signals dropped 50% and then
stabilized. There are no effects using rotenone and sodium azide up to 10 mM.

The NMR T1 relaxation times of all the phosphorus metabolites of MCF7 breast
cancer cells were measured with the improved NMR perfusion system. Since some of the T1
of the phosphorus metabolites are long, the T1 measurement has been always difficult in the
past. It requires a long measurement time. The T1 measurement of the phosphorus metabolites
becomes feasible only with the improved perfusion system. A saturation recovery technique
has been used for the T1 measurement in this study (Figure 19). A series 16 RF pulses flips
the magnetization to horizontal plane first. It follows by a 90° RF pulse and the data
acquisition. The measured T1 relaxation times for each phosphorus metabolites are listed in
the table in the Figure 19. The T1 values vary from 0.38 seconds for B-ATP to 12 seconds for
GPE.

For the in vivo study, cancer cell suspensions (5x106 cells) from monolayer cultures in
the exponential phase of growth are injected into the left hind leg of mice subcutaneously.




The tumor-free right hind leg of the mouse was used as control. The cancer cells are grown as
solid tumor xenographs (Figure 20). For the in vivo imaging, a surface coil is gently placed
around the tumor. The mouse is anesthetized by i.p. injection of katamine and xylazine. A set
of T1 and T2 weighted images throughout the tumor were obtained first. Then, MRI contrast
agent Magnevist (Berlex Laboratories, Wayne, NJ) was injected intravenously. Figure 21
shows two images of the tumor before and after the contrast injection. Clearly, there is a
significant image enhancement in the tumor. The bright area in the image indicates the
presence of contrast agent. The degree of enhancement is different throughout the tumor,
which reflects the heterogeneity of tumor. For the MCF7 tumor model, no significant vascular
structure can be identified in the core of tumor. There is a significant signal enhancement at
peripheral that indicates plenty of blood supply on the surface of tumor.

Key Research Accomplishments

I. Probe Design

e Detail the design of high temperature superconductor (HTS) probe for 9.4T NMR
machine.

e Procure specialized cryo-valves and low temperature mechanical and electrical
components.
Fabricate the components of HTS probe and assemble the probe.
Construct a conventional copper probe for comparison.
Evaluate components and test the operation characteristics of HTS probe. The Q value of
the HTS probe is 650.

II.  Cell Metabolism Study

e Design and construct a perfusion apparatus and perfect the perfusion experiment,
eliminate the air bubble and magnetic field drift problems during the perfusion study.

e Establish a protocol, which significantly extend the useful experiment time, for in vitro
NMR study of cancer cells using the new perfusion system.

e Obtain *'P spectra of MCF7 wild type and drug resistant breast cancer cells. The NMR
signals of phosphorus metabolites from MCF7 cells are well separated. The identifiable
phosphorus metabolites include phosphoethanolamine (PE), phosphocholine (PC),
inorganic phosphate (Pi), glycerophosphoethanolamine (GPE), glycerol-phosphocholine
(GPC), phosphocreatine (PCr), y-adenosine triphosphate (y-ATP), a-adenosine
triphosphate (a-ATP), diphosphodiester (DPDE), and -adenosine triphosphate (B-ATP).

e During the prolonged in vitro study of MCF7 breast cancer cells perfuse with IMEM
medium, PC, GPE and GPC increase while other phosphorus metabolites stay constant.
The increases of GPE and GPC indicate the cell proliferation.

e Drug sensitive MCF7 wild type cells were dramatically affected by 2 puM Doxorubicin
within two hours perfusion and not responsive to Tamoxifen up to 12 hours. In contrast, 2
uM Doxorubicin was without any effect on the drug resistant MCF/ADR cells.

e To determine the lowest number of cells in agarose, 5x10°, which still can have a good
SNR in a reasonable acquisition time (3600 scans, 2 hours)
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The T1 relaxation times of each phosphorus metabolites of MCF7 cells ranging from 0.38
sec for B-ATP to 12 sec for GPE were measured first time. The measurement becomes
feasible due to the improved perfusion system, which is sustainable for long scan time.
When the MCF7 breast cancer cells treated with mitochondria poisons such as
iodoacetamide (1 mM), PE, GPE, GPC and ATP slightly increase initially and then
decreases in 10 hours while DPDE continuously decrease. There is a new extracellular Pi
peak appears immediately after perfusion of iodoacetamide. The extracellular Pi peak
increases first while the intracellular Pi peak decreases indicating the leakage of
intracellular Pi into extracellular space. The ability of detection of extracellular Pi and
separated from the intracellular Pi signal is a novelty.

In Vivo Animal Study

In vivo *'P NMR spectroscopy has shown many phosphorus metabolites in tumors grown
on nude mice. There is a significant lower PCr and ATP signals and higher Pi in the tumor
than in the normal control leg muscle.

A series of in vivo NMR spectroscopy studies during tumor growth indicates gradual
decreases of PCr and ATP and increases of Pi. This indicates there is relatively more
nonviable narcotic tissue in the tumor as tumor progresses.

A localized NMR spectroscopy technique has implemented, which provides biochemical
information from various sections in the tumor. Although, it has a relative poorer
sensitivity, it does provide information from a more specific area within the tumor. The
localized spectroscopic signals shows higher Pi and lower PCr and ATP at the core of
tumor compared to the nonselective signals from the entire tumor.

A high resolution MRI protocol (in-plan resolution, 30 um) has been established for
imaging of blood vessels in a mouse. New small capillaries near a wound have been
identified. There is no identifiable blood vessel inside the MCF7 tumor.

Using a T1 weighted spin-echo imaging technique with MRI contrast agent, Magnevist,
the internal structure of tumor was studied. A significant image enhancement occurred at
the peripheral of tumor after i.v. injection of contrast agent but not at the core of tumor.
Higher image intensity indicates higher contrast agent and higher blood supply at the
peripheral.

Reportable outcomes

1. A list of manuscripts, abstracts and presentations supported by this award:

Agwu, EC, Sridhar R, Wang PC. In vitro and In vivo Characterization of MCF7
Multidrug Resistant Cell Metabolism Using Magnetic Resonance Spectroscopy. 3rd
Annual Research Forum, Howard University, Washington, DC. December 10, 1999.
Wang PC. Biomedical Applications of Nuclear Magnetic Resonance Imaging and
Spectroscopy. Symposium on Recent Trends in Physics. FuJen University, Taipei,
Taiwan, November 27, 1999

Wang PC, Liu DS, Agwu EC, Sridhar Rajagopalan. Application of P31 NMR
Spectroscopy to Distinguish Drug Sensitive and Drug Resistant Breast Cancer. Era of
Hope. pp.217, 2000.
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e ZhouJW, Agwu CE, Li EC, Wang PC. An Improved NMR Perfusion System For Breast
Cancer Cell Study. 42nd Experimental NMR Conference, March 11-16, Orlando, FL.
2001.

e Agwu, EC, Zhou JW, Sridhar R, Wang PC. An Improved NMR Perfusion System For
Breast Cancer Cell Study. 15th Annual Scientific Meeting, October 12-14, Washington,
DC. 2001.

2. Design and construct a superconductor RF probe with Q value 650.

An improved cell perfusion system has been constructed for in vivo NMR study to extend

the in vivo study from 14 hours to longer than 8 days.

4. Five postdoctoral fellows, Drs. Dongsheng Liu, Chi Yuling, Zhou Jienwei, Huafu Song,
and Rengsu Zhang and a MD/PhD student Mr. Emmanuel Agwu were supported by this
grant. Mr. Agwu intends to finish his Ph.D. thesis by the end of 2001 and his M.D.
training by year 2002. Two of the postdoctoral fellows went to industry. One took a
teaching position in a university. The other two postdoctoral fellows continue employment
in this lab as a lab manager and a research associate.

5. Two U.S. Army training grants have been received based on this research:

e "MR Sensitivity Improvement Using High Temperature Superconductor for RF Probe"
(DAAG55-98- 1-0187)

e "A Training Program in Breast Cancer Research Using NMR Techniques" (DAMD- 17-
00-1-0291)

hat

VII. Conclusions

In this project we have constructed and tested a high temperature superconductor RF
coil and a conventional RF probe to study phosphorus metabolites in MCF7 breast cancer
cells and tumor bearing animals. The Q value of this HTc coil (resonance frequency 401.6
MHz) at 77°K is 650. We have studied the differences in the 3Ip NMR spectroscopic profiles
for drug sensitive MCF7 breast cancer cells and their multidrug resistant variant MCF7/ADR
cells. The cells are embedded in agarose gel threads and perfused with growth medium during
the NMR studies. Many phosphorus metabolites have been identified including:
phosphoethanolamine (PE), phosphocholine (PC), inorganic phosphate (Pi), glycerophospho-
ethanolamine (GPE), glycerophosphocholine (GPC), phosphocreatine (PCr), y-adenosine
triphosphate (y-ATP), a-adenosine triphosphate (a-ATP), diphosphodiester (DPDE), and f-
adenosine triphosphate (B-ATP). There are some subtle differences in the spectra of the wild
type and multidrug resistant cells. The GPC signal is higher than PC signal for drug sensitive
cells. However, for the drug resistant cells, GPC is lower than PC signal. We have also
successfully demonstrated that the drug sensitive MCF7 cells were dramatically affected by 2
uM Doxorubicin within two hours perfusion and not responsive to Tamoxifen up to 12 hours.
In contrast, 2 uM Doxorubicin was without any effect on multidrug resistant MCF7/ADR
cells and the *'P NMR spectrum did not differ appreciably after addition of Doxorubicin. We
have constructed an improved cell perfusion system. Using the improved perfusion system the
duration of the cell metabolism studies has been extended more than 8 days much longer than
the previously reported 14 hours. This long and stable study significantly improved the signal-
to-noise ratio of the NMR spectrum. The T1 relaxation times (ranging from 0.38 sec to 12
sec) of each phosphorus metabolites of MCF7 cells were measured first time. With these
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sustainable long scans, some of the entwined peaks, particularly in the PE/PC, GPE/GPC, and
intra- and extra-cellular Pi regions, can be well separated. Four MCF7 breast cancer cells drug
sensitivity studies were also conducted. Mitochondria poison drugs (iodoacetamide, rotenone,
sodium azide, and barbital) with different concentrations (0.1-10 mM) were perfused through
the NMR tube containing the cancer cells. For MCF7/WT cancer cells treated with
iodoacetamide, PE, GPE, GPC and ATP show a slight increase initially and a decrease later
while DPDE continuously decreases. In addition to the intracellular Pi peak, an extracellular
Pi peak appears immediately after perfusion of iodoacetamide. The extracellular Pi indicates
the leakage of intracellular Pi into extracellular space. The ability of detection of extracellular
Pi and separation from the intracellular Pi signal is exciting. For barbital, ATP and PCr
signals dropped 50% and then stabilized. There are no effects using rotenone and sodium
azide up to 10 mM.

For the in vivo animal studies, NMR spectroscopy and imaging techniques were used
on tumor bearing nude mice. In vivo 3p NMR spectroscopy has shown many phosphorus
metabolites similar to that in the cancer cell studies. There is significantly lower PCr and ATP
signals and higher Pi in the tumor than in the normal control leg muscle. During tumor growth
PCr and ATP gradually decreases and Pi increases. This indicates there is relative more
nonviable narcotic tissue in the tumor as tumor progresses. A localized NMR spectroscopy
technique has implemented, which provides biochemical information from various sections in
the tumor. Although it has a relative poorer sensitivity due to smaller tissue volume, the
localized spectrum does provide information from a more specific area within the tumor. The
localized spectroscopic signals shows higher Pi and lower PCr and ATP at the core of tumor
compared to the nonselective signals from the entire tumor. For NMR imaging of tumor, a
high resolution MRI protocol has been established with in-plan spatial resolution 30 um. New
small capillaries near a wound have been identified. There is no identifiable blood vessel
inside the MCF7 tumor. Using a T1 weighted spin-echo imaging technique with MRI contrast
agent, Magnevist, the internal structure of tumor was studied. A significant image
enhancement occurred at peripheral and a small part of the tumor after i.v. injection of
contrast agent. The enhancement is not uniform, which reflects the heterogeneity of the
tumor. Higher image intensity indicates higher contrast agent and higher blood supply at the
peripheral.
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A Long time perfusion system for Breast Cancer Cells

Figure 11.  An improved cell perfusion system. (A) medium reservoir (B) gas release
inducer (C) gas trap (D) pump (E) gas trap (F) NMR tube (G) waste collector.
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Figure 21.  T1-weighted MRI images through the tumor. Two top images are before contrast agent
injection. The bottom two images are after contrast agent injection. The enhanced areas indicate the presence of
contrast agent.




